
 

 

 

C2. BLOCKCHAIN AND CRYPTOGRAPHY BASICS 

 

Today everyone has heard of Blockchain but not everybody understands how it works. 

This section will shows you that Blockchain certainly isn’t magic and in fact it is only 

mathematics.  

To briefly define what the blockchain is we can say that “a blockchain is a ledger that 

uses cryptography and incentives to record transactions in a tamper-evident way. This allows 

for trust-minimized transactions between pseudonymous parties without requiring a trusted 

intermediary. It is worth mentioning here as the first blockchain was conceptualized by an 

individual (or group of individuals) known as Satoshi Nakamoto in 2008.  

At its most basic level, blockchain is literally just a chain of blocks, but not in the 

traditional sense of those words: blocks on the blockchain are made up of digital pieces of 

information and specifically, they have three parts: 

 Blocks store information about transactions (date, time, sum, etc.); 

 Blocks store information about who is participating in transactions but purchase 

is recorded without any identifying information using a unique digital signature 

(like a username). 

 Blocks store information that distinguishes them from other blocks. Each block 

stores a unique code called a hash that allows us to tell it apart from every other 

block. Hashes are cryptographic codes created by special algorithms.  

So, because blockchain technologies make heavily use of cryptography to achieve a 

consensus, in order to understand the key principals behind the protocols, we need to explore 

first some concepts such as: asymmetric encryption,  hash functions and digital signatures.  

Until the 1970s, all publicly known encryption schemes were symmetric: the recipient of 

an encrypted message would use the same secret key to unscramble the message that the sender 

had used to scramble it. But that all changed with the invention of asymmetric encryption 

schemes in which the key to decrypt a message (the private key) was different from the key 

needed to encrypt it (known as the public key) and there was no practical way for someone who 

only had the public key to figure out the private key. 



 

 

 

This meant you could publish your public key widely, allowing anyone to use it to 

encrypt a message that only you could decrypt. This breakthrough transformed the field of 

cryptography because it became possible for any two people to communicate securely over an 

unsecured channel without establishing a shared secret first.  

Asymmetric encryption also had another groundbreaking application: digital signatures. 

In normal public-key cryptography, a sender encrypts a message with the recipient's public key 

and then the recipient decrypts it with her private key. But you can also flip this around: have 

the sender encrypt a message with his own private key and the recipient decrypt it with the 

sender's public key. That doesn't protect the secrecy of the message (since anyone can get the 

public key). Instead, it provides cryptographic proof that the message was created by the owner 

of the private key. Anyone who has the public key can verify the proof without knowing the 

private key. 

Since the 1980s many people dreamed of using digital signatures to build an electronic 

cash system that's fully decentralized. But there were two big issues: how to introduce new coins 

into the system and how to solve the double-spending problem. In 2008, Satoshi Nakamoto 

invented a shared ledger called the blockchain that is maintained by computers, called nodes, 

operating on a peer-to-peer network. Thousands of computers around the world keep separate 

copies of the entire blockchain, storing every transaction that has happened since the network 

was launched in 2009.  

Some of the nodes are miners that participate in the process of actually updating the 

blockchain. A miner makes a list of all the transactions it has heard about that aren't already in 

the blockchain; it checks to make sure that each transaction follows all of the rules of bitcoin. 

The resulting list of new, valid transactions is called a block. The miner also adds a special 

transaction granting itself a fixed reward—currently 12.5 bitcoins—for creating the block. To 

win the right to add the next block, bitcoin miners compete against each other by performing a 

highly repetitive computation. They add a random value called a nonce to the candidate block 

they have assembled. Then they apply the SHA-256 hash function, which produces a short, 

seemingly random string of 1s and 0s that serves as a cryptographic fingerprint for the block. 

 

 
 



 

 

Hash Functions 

A hash function is a mathematical function that lets you encrypt data. In simple terms, 

hashing means taking an input string of any length and giving out an output of a fixed length. In 

the context of cryptocurrencies (like Bitcoin), the transactions are taken as input and run through 

a hashing algorithm (Bitcoin uses SHA-256) which gives an output of a fixed length. 
 

A cryptographic hash function is a special class of hash functions that has various 

properties making it ideal for cryptography. There are certain properties that a cryptographic 

hash function needs to have in order to be considered secure: 

 Deterministic: no matter how many times you parse through a particular input through 

a hash function you will always get the same result. This is critical because if you get 

different hashes every single time it will be impossible to keep track of the input); 

 Quick Computation: the hash function should be capable of returning the hash of input 

quickly to be efficient; 

 Pre-Image Resistance: given H(A) it is infeasible to determine A, where A is the input 

and H(A) is the output hash. We already know that it is not impossible to determine the 

original input from its hash value since the hash functions are deterministic and the hash 

of a particular input will always be the same, so you can simply compare the hashes and 

find out the original input but this only works when the given amount of data is very less. 

 Small Changes In The Input Changes the Hash; 

 Collision Resistance: when two different inputs produce the same output. A hash 

function is considered to be collision resistant if nobody can find a collision. In theory, 

we know they exist because the number of inputs is infinite, but the number of outputs is 

finite (there are only so many ways to arrange 64 characters); 

 Puzzle Friendly: if someone wanted to generate a hash that came up with the same 

output it’s extremely difficult to find another value that exactly hits this target. 

Examples of cryptographic hash functions: 

- MD 5: It produces a 128-bit hash. Collision resistance was broken after ~2^21 hashes. 

- SHA 1: Produces a 160-bit hash. Collision resistance broke after ~2^61 hashes. 

- SHA 256: Produces a 256-bit hash. This is currently being used by Bitcoin. 

- Keccak-256: Produces a 256-bit hash and is currently used by Ethereum. 

 



 

 

Web Resources for hash functions: 

http://www.unit-conversion.info/texttools/category/Hash_and_Encryption#data  

 

Elliptic Curve Digital Signature Algorithm 

We saw earlier that bitcoin themselves are not stored either centrally or locally but they exist 

as records on the blockchain, copies of which are shared by a volunteer network of connected 

computers. To “own” a bitcoin simply means having the ability to transfer control of it to 

someone else by creating a record of the transfer in the blockchain. But what grants this ability? 

Access to an ECDSA (short for Elliptic Curve Digital Signature Algorithm ) private and public 

key pair. It’s a process that uses an elliptic curve and a finite field to “sign” data in such a way 

that third parties can verify the authenticity of the signature while the signer retains the exclusive 

ability to create the signature.  

ECDSA has separate procedures for signing and verification. Each procedure is an algorithm 

composed of a few arithmetic operations. The signing algorithm makes use of the private key, 

and the verification process makes use of the public key. But first let's define the elliptic curves 

and the notions of finite fields. 

An elliptic curve is represented algebraically as an equation of the form: 

𝑦ଶ  ൌ  𝑥ଷ    𝑎𝑥   𝑏 

Bitcoin use a = 0 and b = 7 and the graphic looks like this: 

 
Source: https://www.coindesk.com/wp-content/uploads/2014/10/elliptic-curves.png 



 

 

Elliptic curves have useful properties. For example, a non-vertical line intersecting two non-

tangent points on the curve will always intersect a third point on the curve. A further property is 

that a non-vertical line tangent to the curve at one point will intersect precisely one other point 

on the curve. These properties can be used to define two operations: point addition and point 

doubling. 

Point addition, P + Q = R, is defined as the reflection through the x-axis of the third 

intersecting point R` on a line that includes P and Q. 

 
Source: https://www.coindesk.com/wp-content/uploads/2014/10/point-addition.png 

 

Similarly, point doubling, P + P = R is defined by finding the line tangent to the point to be 

doubled, P, and taking reflection through the x-axis of the  intersecting point R` on the curve to 

get R. Here’s an example of what that would look like: 

 
Source: https://www.coindesk.com/wp-content/uploads/2014/10/point-doubling.png 



 

 

Together, these two operations are used for scalar multiplication, R = a P, defined by adding 

the point P to itself a times.  For example: R = 7P; R = P + (P + (P + (P + (P + (P + P))))). 

The process of scalar multiplication is normally simplified by using a combination of point 

addition and point doubling operations. For example, 7P can be broken down into two point 

doubling steps and two point addition steps: 

R = 7P; R = P + 6P; R = P + 2 (3P); R = P + 2 (P + 2P) 

A finite field, in the context of ECDSA, can be thought of as a predefined range of positive 

numbers within which every calculation must fall. Any number outside this range “wraps 

around” so as to fall within the range. The simplest way to think about this is calculating 

remainders, as represented by the modulus (mod) operator. For example, 9/7 gives 1 with a 

remainder of 2. ECDSA uses elliptic curves in the context of a finite field, which greatly 

changes their appearance but not their underlying equations or special properties. The same 

equation plotted above, in a finite field of modulo 67, looks like this: 

 
Source: https://www.coindesk.com/wp-content/uploads/2014/10/putting-it-together.png 

 

 

ECDSA and Bitcoin 

Bitcoin protocol selects a set of parameters for the elliptic curve and its finite field 

representation that is fixed for all users of the protocol. The parameters include the equation 

used, the prime modulo of the field, and a base point that falls on the curve. The order of the 

base point, which is not independently selected but is a function of the other parameters, can be 

thought of graphically as the number of times the point can be added to itself until its slope is 

infinite, or a vertical line. The base point is selected such that the order is a large prime number. 



 

 

 

Bitcoin uses very large numbers for its base point, prime modulo, and order. In fact, all 

practical applications of ECDSA use enormous values. The security of the algorithm relies on 

these values being large, and therefore impractical to brute force or reverse engineer. 
 

In the case of bitcoin: 

 Elliptic curve equation: 𝑦ଶ  ൌ  𝑥ଷ  7 

 Prime  modulo  =  2ଶହ‐2ଷଶ െ 2ଽ‐2଼‐2 െ 2 െ 2ସ െ 1  FFFFFFFF  FFFFFFFF  FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F 

 Base  point  =  04  79BE667E  F9DCBBAC  55A06295  CE870B07  029BFCDB  2DCE28D9 

59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 

9C47D08F FB10D4B8 

 Order  =  FFFFFFFF  FFFFFFFF  FFFFFFFF  FFFFFFFE  BAAEDCE6  AF48A03B  BFD25E8C 

D0364141 

How private and public keys are related with ECDSA? 

In ECDSA, the private key is an unpredictably chosen number between 1 and the order. 

The public key is derived from the private key by scalar multiplication of the base point a number 

of times equal to the value of the private key. Expressed as an equation: 

public key = private key * base point 

This shows that the maximum possible number of private keys (and thus bitcoin 

addresses) is equal to the order. 
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