

BLOCKCHAIN AND CONSENSUS

27.06.2021

AGENDA

- Introduction of Distributed Systems
- Introduction of Money
- Bitcoin Motivation
- Importance of Digital Disruption
- Consensus as a Solution
- Introduction of CAP Theorem
- Blockchain Consensus

DEFINITION OF DISTRIBUTED SYSTEMS

- According to Leslie Lamport "A distributed system is one that prevents you from working because of the failure of a machine that you had never heard of."
- More data rate due to simultaneous read/write.
- Concurrent computation results in higher performance.
- Smaller latency because of improved load balancing.
- Higher availability because of replicating application process.
- Higher reliability due to multiple computation and crosscheck
- Higher stability because of no singe point of failure.

DISADVANTAGE OF DISTRIBUTED SYSTEMS

- Distributed systems has high overall system complexity because of following-
 - Heterogeneity- over a heterogeneous collection of computers and networks.
 - Larger attack surface- more nodes, the bigger the attack surface.
 - More people involved- results no consensus and more misunderstanding.
 - Smaller reliability-more and remote failure modes can cause smaller reliability.
 - Scalability-must be scalable as the number of user increases.

MAIN TASK OF DISTRIBUTED SYSTEMS

- Contain the inherent complexity
- Use the advantages while avoiding their price.

DISTRIBUTED SYSTEM CONSENSUS

- Consensus mechanism is used to achieve reliable system in a distributed system.
- This ensures that the system is fully decentralized; are trusted nodes or PKI required?
- Determines and identifies how, when, and which model failed.
- Detection of synchronous, asynchronous, and bounded communication model.
- Confirms whether or not the model was terminated or failed.

DISTRIBUTED SYSTEM WHY CONSENSUS IS DIFFICULT?

- Distributed systems has following limitations-
 - Impossible to prove termination.
 - Impossible to prove correctness.
 - Impossible to pinpoint the location of the failure.
 - Impossible to detect failure.

MONEY

- It is a measure of value.
- Medium of value of exchange
- Deferring value of exchange
- Money as a unlimited optionality
- Money as a abstract data type
- Monetary system

BITCOIN

- Protect against inflation
 - To maintain monetary stability by constraining political decisions
- Protect against next Lehman crisis
 - Satoshi Nakamoto's solution was trustless money.
- Escape negative interest rates
 - Urge consumers to spend
 - Undermine financial decision autonomy of citizen
- Denial of service based on policy or identity

BITCOIN ARCHITECTURE

- Fully decentralized P2P with no single point of action
- Open to anonymous & private participation of everybody
- Governed by a majority consensus of participating entities
- Highly replicated and thus robust against attacks
- Cryptography is used to secure data, not human trust or social power.
- The majority of nodes constantly adhere to majority-decided governance.

DIGITAL DISRUPTION EMAIL

- Data is essential.
- Data are overhyped.
- Everyone uses data in some way.

Limitation:

- Nobody modifies the processes.
 - Using email to send holiday photos to friends
 - Introducing "digital teaching" by disseminating PDFs

DIGITAL DISRUPTION INTERMEDIARIES

- Recognize and accommodate special needs.
- Utilize scenarios in processes.
- Uber, Tinder, AirBnB, Facebook, Google & Co. introduce specialized solutions.
- Everyone enters their preferences and personal information.
- Everything becomes freely available.
 Limitation:
- TOS user lock-in.
 - What precisely are they doing with my data?
 - Why can not I have my way about it? (No ads, spam filters, adaptation of user interface, migration platform, data sovereignty,...)

DIGITAL DISRUPTION

Figure 1: You are being sold if you do not pay for it.

TALLINN UNIVERSITY OF TECHNOLOGY

DIGITAL DISRUPTION OBSTACLES

- Value generation- There are no incentives for value generation for intermediaries:
 - dissemination & marketing & branding
 - un-nerding & mainstreaming
 - user studies on UI quality
 - bug removal & feature proliferation & language localization
- Adherence to community standards- How can we apply open democratic standards to Community rules?
 - Consensus
 - Benevolent dictator

DIGITAL DISRUPTION BITCOIN AS A SOLUTION

- Value generation-
 - Bitcoin blockchain comes with Bincluded.
- Adherence to community standards- Bitcoin began with this goal for the monetary system and has successfully achieved it.
 - Bitcoin upholds a community standard:
 - Σ total amount deposited- Σ total withdrawls=balance , where balance>=0
- Ethereum enforces intricate community standards (aka smart contracts)

pragma solidity >=0.4.22 <0.6.0;</pre>

contract SimpleAuction {

// Parameters of the auction. Times are either
// absolute unix timestamps (seconds since 1970-01-01)
// or time periods in seconds.
address payable public beneficiary;
uint public auctionEndTime;

// Current state of the auction.
address public highestBidder;
uint public highestBid;

// Allowed withdrawals of previous bids
mapping(address => uint) pendingReturns;

// Set to true at the end, disallows any change.
// By default initialized to `false`.
bool ended;

// Events that will be emitted on changes.
event HighestBidIncreased(address bidder, uint amount);
event AuctionEnded(address winner, uint amount);

// The following is a so-called natspec comment, // recognizable by the three slashes. // It will be shown when the user is asked to // confirm a transaction.

/// Create a simple auction with `_biddingTime`
/// seconds bidding time on behalf of the
/// beneficiary address `_beneficiary`.

Figure 2: Simple open auction smart contract specification https://docs.soliditylang.org/en/v0.5.3/solidity-by-ex ample.html

BLOCKCHAIN IMPROVES DIGITAL DISRUPTION

- Every individual creates their own identity.
 - Nobody was unfairly omitted.
 - Create a public-private key pair at random (e; d)
 - Very small chance of collision of random key pairs
- A bitcoin node can/may be operated by anyone.
 - There is always a bitcoin bank available to you.
- Everyone broadcasts and stores all transactions and responds to inquiries about account status.

- Storage that is robust and available in the face of node failures and network partitions

MAIN SOURCE OF BLOCKCHAIN CONSENSUS PROBLEMS

- Network and processing latencies are an unavoidable side effect.
 - A transaction is generated, signed, and broadcasted by Alice.
 - Carol has not heard from it yet, but Bob has.
 - Donald has started a new block, but Eric has yet to hear from it
- Double spending attack
 - Mallory sends conflicting transactions to different nodes on purpose.

Attack from Malicious nodes

- Mallory provides inconsistent responses to requests on purpose.

Attack from Sybil nodes

- Mallory takes on the roles of Mallory-1, Mallory-2, and Mallory-3 in order to influence "majority" consensus.

BYZANTINE GENERAL PROBLEMS

- Each general has army and that each group is situated in different locations.
- All generals reach consensus, ice, agree on a common decision.
- After the decision is made, it cannot be changed.
- The communication take place with another through messages.
- Messages can get somehow delayed, destroyed or lost
- General represents a network nodes and nodes to reach consensus.
- Majority of participants have to agree and execute the same action.
- If majority of participants decide to act maliciously, the system is susceptible to failure or attacks.

CAP THEOREM

- CAP theorem, also known as Brewer's theorem, was introduced by Eric Brewer in 1998
 - **Consistency (C)** ensures that all nodes have a single, current, and identical copy of the data.
 - **Availability (A)** means that each node has data, and the nodes are responding to requests.
 - **Partition tolerance (P)** ensures that even if a network fails, the distributed system continues to function properly.
- Blockchain manages to achieve all of these properties.
 - To achieve fault tolerance, replication is used.
 - Consistency is achieved using consensus algorithms which ensure that nodes have the same copy of the data.
 - Consistency (C) on the blockchain is not achieved simultaneously with Partition tolerance (P) and Availability (A), but it is achieved over time

TALLINN UNIVERSITY OF TECHNOLOGY

HOW TO DEAL WITH CAP?

Figure 3: CAP problem is depicted in a nicely equilateral triangle. Source: Image source

TAL TECH

TALLINN UNIVERSITY OF TECHNOLOGY

HOW TO DEAL WITH CAP THEOREM

CA systems drop partition tolerance

- Put everything related to a single transaction on a single node or in an atomically failing cluster.

- Does not scale well.
- Is not resistant to site and/or connectivity loss.

AP systems drop consistency

- Consistent systems occasionally accept outdated responses.
- The most recently written value will finally be reached.
- CP systems drop availability
 - Until the data has become consistent, avoid partition events.
 - Degraded network partition detection.

ACID VERSUS BASE FOR DATABASE TRANSACTION

Database transactions should be:

- Atomic: Everything in a transaction succeeds or the entire transaction is rolled back.
- **C**onsistent: A transaction cannot leave the database in an inconsistent state.
- Isolated: Transactions cannot interfere with each other.
- **D**urable: Completed transactions persist, even when servers restart etc.

• An alternative to ACID is BASE:

- Basic Availability- but not necessarily guaranteed availability
- **S**oft-state- No hard guarantees on a state
- Eventual consistency- State will sooner or later converge.

CAP THEOREM

BASE offers

- Simpler syatem design
- Faster transactions
- Better scalability
- Higher availability
- Smaller downtime
- Price to pay: Only weak consistency, which means..
 - Data may be delayed: Data was that way before.
 - Data can be stale: State is shown, but does not exist.
 - Mechanisms are required to detect and fix this

ROLE OF BLOCKCHAIN STRUCTURE ON CAP THEOREM

Figure 4: States of Blockchain in time.

ROLE OF BLOCKCHAIN STRUCTURE ON CAP THEOREM

Chain provides a sequence of states

- There may be several transactions involving the same account arriving at different nodes at different order.

- Resolution by real-time clocks.
- Resolution by time-stamp algorithm.

Resolution in bitcoin

- By random winner of PoW for locally
- Selfish nodes prefer the longest branch globally.
- Additional roles of chain
 - Conflict resolution by "rule of longest branch"
 - The block chain must be reset from the genesis block
 - Redoing entire chain is very costly

BLOCKCHAIN CONSENSUS ALGORITHM

Classical consensus algorithms include:

- Proof of Work (PoW)
- Proof of Stake (PoS)
- Proof of Authority (PoA)

Four others types includes:

- Proof of Weight (PoW)
- Byzantine Fault Tolerance (BFT)
- Directed Acyclic Graphs (DAG)
- Delegated Proof of Stake (DPoS)

PROOF OF WORK (POW)

- An insulating method from fraudulent transactions, except in the event of a 51% attack.

- A group of miners with a majority of network computing power conspires to obstruct transactions.

- Proof of work is based on math equations, which the nodes, or miners, on a network race to solve.

- First miner to solve the mathematical equation receives freshly minted Bitcoin.

- To guarantee equal probabilities, proof of work equations must be solved by brute force.

- Bitcoin, Litecoin uses Proof of Work algorithm.

PROOF OF WORK (POW): ENERGY CONSUMPTION

Single Bitcoin Transaction Footprints

Figure 5: Bitcoin Energy consumption

PROOF OF WORK (POW): ENERGY CONSUMPTION

Annualized Total Bitcoin Footprints

Figure 5: Bitcoin Energy consumption

TALLINN UNIVERSITY OF TECHNOLOGY

PROOF OF STAKE (POS)

- Depend on how much cryptocurrency a node or validator already owns and stakes.
- Created in response to the increasing computational power required by the PoW.
- Elimination of racing to solve a mathematical equation as in PoW
- Nodes select a percentage of transactions based on their stake of ownership in the network.
- Eliminates the need to leverage (and waste) exorbitant amounts of computing power
- Ethereum 2.0, Peercoin uses the Proof of Stake.

PROOF OF AUTHORITY

- Combination of PoS and PoW, stakeholders is selected in a pseudorandom.
- More energy-efficient mechanism than the PoW.
- Small and designated number of blockchain actors the power to validate transactions or interaction with the network.
- Each new block of transactions is validated by one or more validation machines.
- It does not require a lot of computing power and does not use a lot of electricity.
- It is often favoured by private or consortium blockchains.

PROOF OF WEIGHT

- Concepts: Next block minting is based on some weighted value, not necessarily coupled to system tokens like PoS.
 - Filecoin's Proof-of-Spacetime is weighted on how much IPFS data you're storing.
- **Used in**: Filecoin, Chia, Algorand
- Pros-
 - Customizable; scalable
- Cons-
 - Incentivization can be a challenge

PBFT (PRACTICAL BYZANTINE FAULT TOLERANCE)

- Algorithm for state machine replication that tolerates Byzantine faults
- The algorithm offers both liveness (client finally receiving correct replies to their requests) and safety, provided:
 - At most `(n-1)/3' nodes are faulty out of `n' nodes
 - Delay 't' does not grow faster than indefinitely.
- Delays occur when a message is sent for the first time, and when it has been received by its destination
- PBFT is currently used in Hyperledger fabric along with the Kafka ordering system

DIRECTED ACYCLIC GRAPH

Figure 6:DAGs emphasized front-covering instead of one-tree-focused DAGs.

DIRECTED ACYCLIC GRAPH

- Acyclic just means that no node in the graph can reference back to itself; it can't be its own mother node.
- This data structure resembles a flow chart where all points are headed in one direction.
- The first crypto project we must mention when talking about DAG is IOTA.
- IOTA is an excellent example of a DAG based cryptocurrency.
- Suitable for IoT devices.
- Centralization might be a requirement.

DELEGATED PROOF OF STAKE (DPOS)

- Users of the network vote and elect delegates to validate the next block.
- Delegates are also called witnesses or block producers.
- Staking your tokens in a pool grants you voting rights to delegates.
- Staking services provider in a staking pool (in place of "you transfer your tokens to another wallet").
- Much better scalability
- Centralization might be a requirement.
- Much faster transaction clearance (up to 1 block/sec)

Thank you very much for your attention! Q & A?

Reference: Arumaithurai M., Introduction to Blockchains, Tallinn, Estonia 2019, https://tinyurl.com/n2y3k5pu