
DD.MM.YYYY

PROGRAMMING SMART CONTRACTS
INTRODUCTION INTO PROGRAMMING IN SOLIDITY

27.03.2019

blockchain.taltech.ee

TALLINN UNIVERSITY OF TECHNOLOGY

AGENDA

 Introduction

 Bitcoin Script

 Basic of Ethereum and Solidity

 Smart contracts

 Programming languages

 Remix

TALLINN UNIVERSITY OF TECHNOLOGY

SMART CONTRACT HISTORY

 Definition of Smart contracts (According to Nick Szabo):

“A canonical real-life example, which we might consider to be the
primitive ancestor of smart contracts, is the humble vending machine.
Within a limited amount of potential loss (the amount in the till should be
less than the cost of breaching the mechanism), the machine takes in
coins, and via a simple mechanism, which makes a freshman computer
science problem in design with finite automata, dispense change and
product according to the displayed price.

[…]

Smart contracts go beyond the vending machine in proposing to
embed contracts in all sorts of property that is valuable and
controlled by digital means.”

TALLINN UNIVERSITY OF TECHNOLOGY

SMART CONTRACT HISTORY

 Definition of Smart contracts (According to Nick Szabo):

“Many kinds of contractual clauses (such as collateral, bonding,
delineation of property rights, etc.) can be embedded in the hardware
and software […]”

 The inherent features of blockchains that have enabled its application in
so many domains, has also made it possible to achieve Nick Szabo’s
vision of smart contracts that he defines as “a set of promises, specifed
in digital form, including protocols within which the parties perform on
these promises”

TALLINN UNIVERSITY OF TECHNOLOGY

SMART CONTRACT INTERPRETATION

 Legal contract: “I promise to send you $100 if my lecture is rated 1*”

 Smart contract: “I send $100 into a computer program executed in a
secure environment which sends $100 to you if the rating of my lecture
is 1*, otherwise it eventually sends $100 back to me”

 Example:

if HAS_EVENT_X_HAPPENED() is true:

 send(party_A, 1000)

else:

 send(party_B, 1000)

TALLINN UNIVERSITY OF TECHNOLOGY

INTRODUCTION INTO BITCOIN SCRIPT

 Transactions on Bitcoin are scripted. Script is forth-like, stack-based, and
processed left to right.

 It is not Turing-complete and has no loops.

Source: http://siminchen.github.io/bitcoinIDE/build/editor.html

TALLINN UNIVERSITY OF TECHNOLOGY

BITCOIN SCRIPT OPCODES

 This is a list of all Script words,
also known as opcodes,
commands, or functions.

Source: htps://en.bitcoin.it/wiki/Script

TALLINN UNIVERSITY OF TECHNOLOGY

STANDARDIZED BITCOIN TRANSACTIONS AND SCRIPTS

 Standard Transaction to Bitcoin address (pay-to-pubkey-hash):

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

scriptSig: <sig> <pubKey>

TALLINN UNIVERSITY OF TECHNOLOGY

STANDARDIZED BITCOIN TRANSACTIONS AND SCRIPTS

 P2PK: "Pay To Public Key":

OP_CHECKSIG is used directly without first hashing the public key. This
was used by early versions of Bitcoin where people paid directly to IP
addresses, before Bitcoin addresses were introduced. scriptPubKeys of this
transaction form are still recognized as payments to user by Bitcoin Core.

TALLINN UNIVERSITY OF TECHNOLOGY

STANDARDIZED BITCOIN TRANSACTIONS AND SCRIPTS

 P2SH: "Pay To Script Hash"

A transaction's output is a boolean script that returns true or false. In this
case, a miner will send money to your output if the script is run with the
specified parameters. With P2SH, you can create multi-signature wallets
that check for multiple signatures.

 <recipient signature> [further signatures] <Redeem Script> OP_HASH160
<Hash160(Redeem Script)>

OP_EQUAL

<OP2>

<pub key recipient A> <pub key recipient B> <pub key recipient C> <OP3>
OP_CHECKMULTISIG

 P2WPKH: "Pay To Witness Public Key Hash":

 This was a segwit feature (Segregated Witness). Instead of using scriptSig
parameters to validate transactions, a new part of the transaction called
witness is used.

TALLINN UNIVERSITY OF TECHNOLOGY

BITCOIN TRANSACTION BLOCK-SCHEMA
 A relationship between confirmed transactions with unspent

outputs and new unsubmitted transactions is shown in the
figure below.

01000000019c2e0f24a03e72002a9
6acedb12a632e72b6b74c05dc3ce
ab1fe78237f886c48010000006a47
304402203da9d487be5302a6d69e
02a861acff1da472885e43d7528ed
9b1b537a8e2cac9022002d1bca03
a1e9715a99971bafe3b1852b7a4f0
168281cbd27a220380a01b330701
2102c9950c622494c2e9ff5a003e3
3b690fe4832477d32c2d256c67eab
8bf613b34effffffff02b6f5050000000
0001976a914bdf63990d6dc33d705
b756e13dd135466c06b3b588ac84
5e0201000000001976a9145fb0e9
755a3424efd2ba0587d20b1e98ee
29814a88ac00000000

TALLINN UNIVERSITY OF TECHNOLOGY

STEPS OF BUILDING A TRANSACTION

 Step 1- Identify the previous transaction that contains your UTXOs
(Bitcoin).

 Step 2- Create input outpoints for the new transaction to find previously
spent UTXOs.

 Step 3- To spend/unlock the new UTXOs for the next transaction, you
must build the outputs for the new transaction so the locking script
contains the conditions.

 Step 4- Finally, write the unlocking script to meet the same criteria as
the transaction locking script. The final step is the recipient's signature,
which is also in the unlocking script, but is added in the middle of the
transaction.

TALLINN UNIVERSITY OF TECHNOLOGY

STEPS OF BUILDING A TRANSACTION

 A PubkeyScript is a set of recorded instructions that governs how the
next person can receive and spend Bitcoin.

 Public key hash and private key signature are required to unlock the
PubKey Script and spend received funds.

Source: https://genesisblockhk.com/what-is-p2pkh/

TALLINN UNIVERSITY OF TECHNOLOGY

STEPS OF BUILDING A TRANSACTION

 To spend Bob's new bitcoin, he must prove he owns the Bitcoin address
Alice sent it to.

 In P2PKH, only the owner of the bitcoin address provided to Alice can
pass it on.

 Bob, generates the scriptSig to satisfy the scriptPubKey (generated by
Alice) to send his Bitcoin to another person

TALLINN UNIVERSITY OF TECHNOLOGY

REAL EXAMPLES OF BITCOIN TRANSACTION

 Input

Hex:
76a9144fd31c644c4b46c153601d
0e194ab689570f4ce488ac

ASM
OP_DUP

OP_HASH160

fd31c644c4b46c153601d0e194ab6895
70f4ce4

OP_EQUALVERIFY

OP_CHECKSIG

 Sigscript:

483045022100c71b09c8161ca14b6ef96f155173bda080d72bb
77953122f268b9527ff806f9302200fac42255dbe0317bbbea75
837fe2e9e9bfdb3fc1161d5c45353dfdf4ecba074012102f4c4c2b
0b7c23b472cdc8c27d22a41677d7e69e220675647ccf231831e
5113cf

ASM:

 3045022100c71b09c8161ca14b6ef96f155173bda080d72bb77
953122f268b9527ff806f9302200fac42255dbe0317bbbea7583
7fe2e9e9bfdb3fc1161d5c45353dfdf4ecba0740102f4c4c2b0b7c
23b472cdc8c27d22a41677d7e69e220675647ccf231831e5113
cf

 Pkscript is encoded in hexadecimal ()Hex, and Bitcoin's scripting language op-codes are
encoded in ASM, assembly.

TALLINN UNIVERSITY OF TECHNOLOGY

REAL EXAMPLES OF BITCOIN TRANSACTION

TALLINN UNIVERSITY OF TECHNOLOGY

ETHEREUM AND ITS DATA PROCESSING
HOW BLOCKCHAIN ACCUMULATES BLOCKS

 Transaction: A node starts a transaction by first
creating and then digitally signing it with its private
key.

 Validation: A transaction is propagated to peers that
validate the transaction based on preset criteria.
Usually, more than one node are required to verify the
transaction.

 Block building and chaining: Once the transaction is
validated, it is included in a block, which is then
propagated onto the network.

 Block distribution:

 Indirect, algorithmic consensus

TALLINN UNIVERSITY OF TECHNOLOGY

BITCOIN VS ETHEREUM
UTXO VS ACCOUNT

UTXO
Account State

TALLINN UNIVERSITY OF TECHNOLOGY

PROGRAMMING LANGUAGES FOR BLOCKCHAINS

TALLINN UNIVERSITY OF TECHNOLOGY

PROGRAMMING LANGUAGES FOR BLOCKCHAINS

TALLINN UNIVERSITY OF TECHNOLOGY

REMIX: OFFICIAL DEVELOPMENT ENVIRONMENT

 Remix is used for contract
development, as well as
learning and teaching
Ethereum.

 Solidity contracts can be
written using Remix IDE, a
powerful open source tool.

Source: https://remix.ethereum.org/

TALLINN UNIVERSITY OF TECHNOLOGY

SOLIDITY SOURCE CODE

pragma solidity >=0.4.22 <0.6.0; //alt:^0.4.22 => version pragma: defines required compiler
version
import "remix_tests.sol"; // this import is automatically injected by Remix. => single line comment
import "./ballot.sol"; library or contract imports (re-use)
/*
write something here multi line comment
*/
contract test3 { contract section
Ballot ballotToTest; object definition
function beforeAll () public { function definition without return value
ballotToTest = new Ballot(2);
}
function checkWinningProposal () public {
ballotToTest.vote(1);
Assert.equal(ballotToTest.winningProposal(), uint(1), "1 should be the winning proposal");
}
function checkWinninProposalWithReturnValue () public view returns (bool) { ...with return value
return ballotToTest.winningProposal() == 1;
}
}

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE 1

 Task:

1. Enter Hello World smart contract into
remix
2. Compile and debug it
3. Run it and see what happens
4. Switch the compiler version to some
0.4.x compile + run
5. Change the pragma in code line 1 to
0.4.1 c&r
6. Change line 4 (string) to (string
memory) c&r
7. Change the pragma + compiler version
to higher than 0.5.x c&r

Thank you very much for your attention!
Q & A?

Reference: Arumaithurai M., Introduction to Blockchains, Tallinn,
Estonia 2019, https://tinyurl.com/n2y3k5pu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

