BLOCKS

@ blockchain.taltech.ee

PROGRAMMING SMART CONTRACTS

INTRODUCTION INTO PROGRAMMING IN SOLIDITY

27.03.2019

AGENDA

= Introduction

= Bitcoin Script

» Basic of Ethereum and Solidity
= Smart contracts

= Programming languages

= Remix

TECH TALLINN UNIVERSITY OF TECHNOLOGY

SMART CONTRACT HISTORY

» Definition of Smart contracts (According to Nick Szabo):

“A canonical real-life example, which we might consider to be the
primitive ancestor of smart contracts, is the humble vending machine.
Within a limited amount of potential loss (the amount in the till should be
less than the cost of breaching the mechanism), the machine takes in
coins, and via a simple mechanism, which makes a freshman computer
science problem in design with finite automata, dispense change and
product according to the displayed price.

[...]

Smart contracts go beyond the vending machine in proposing to
embed contracts in all sorts of property that is valuable and
controlled by digital means.”

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

SMART CONTRACT HISTORY

» Definition of Smart contracts (According to Nick Szabo):

“Many kinds of contractual clauses (such as collateral, bonding,

delineation of property rights, etc.) can be embedded in the hardware
and software [...]"

» The inherent features of blockchains that have enabled its application in
so many domains, has also made it possible to achieve Nick Szabo’s
vision of smart contracts that he defines as “a set of promises, specifed

in digital form, including protocols within which the parties perform on
these promises”

TECH TALLINN UNIVERSITY OF TECHNOLOGY

SMART CONTRACT INTERPRETATION

= Legal contract: "I promise to send you $100 if my lecture is rated 1*”

= Smart contract: "I send $100 into a computer program executed in a
secure environment which sends $100 to you if the rating of my lecture
is 1*, otherwise it eventually sends $100 back to me”

= Example:

if HAS_EVENT_X_HAPPENED() is true:
send(party_A, 1000)
else:
send(party_B, 1000)

TECH TALLINN UNIVERSITY OF TECHNOLOGY

]
Script Assem bly £ Editor Options

1 12 OP_ADD

Source: http://siminchen.github.io/bitcoinIDE/build/editor.html

BITCOIN SCRIPT OPCODES

Splice

If any opcode marked as disabled is present in a script, it must abort and fail.

= This is a list of all Script words,
also known as OpcodeS, Word Opcode | Hex Input Output Description
commands, or functions. OPCAT |16 |Ode]xi |o

OP_SUBSTR | 127 0x7f | in begin size | out

OP_LEFT 128 0x80 | in size out

OP_RIGHT | 129 0x81 | in size out

OP_SIZE 130 0x82 | in in size | Pushes the string length of the top element of the stack (without popping it).
Bitwise logic

If any opcode marked as disabled is present in a script, it must abort and fail.

Word Opcode | Hex | Input| Output Description
OP_INVERT 131 0x83 | in out
OP_AND 132 0x84 | x1x2 | out
OP_OR 133 0x85 | x1x2 | out
OP_XOR 134 0x86 | x1x2 | out
OP_EQUAL 135 0x87 | x1x2 | True /false | Returns 1 if the inputs are exactly equal, O otherwise.
OP_EQUALVERIFY | 136 0x88 | x1 x2 | Nothing / fail | Same as OP_EQUAL, but runs OP_VERIFY afterward.

sSource: htps://en.bitcoin.it/wiki/Script

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

STANDARDIZED BITCOIN TRANSACTIONS AND SCRIPTS

= Standard Transaction to Bitcoin address (pay-to-pubkey-hash):

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

scriptSig: <sig> <pubKey>

76 A9 14
OP DUP OP HASH169© Bytes to push

89 AB CD EF AB BA AB BA AB BA AB BA AB BA AB BA AB BA AB BA 88 AC
Data to push OP_EQUALVERIFY OP_CHECKSIG

Note: scriptSig is in the input of the spending transaction and scriptPubKey is in the output of the previously unspent i.e. "available" transaction.

Here is how each word is processed:

Stack Script Description
Empty. <sig= <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG | scriptSig and scriptPubKey are combined.
<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG Constants are added to the stack.
<sig> <pubKey> <pubKey> OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG Top stack item is duplicated.
<sig> <pubKey> <pubHashA> <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG Top stack item is hashed.
<sig> <pubKey> <pubHashA> <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG Constant added.
<sig> <pubKey> OP_CHECKSIG Equality is checked between the top two stack items.
frue Empty. Signature is checked for top two stack items.

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

STANDARDIZED BITCOIN TRANSACTIONS AND SCRIPTS

= P2PK: "Pay To Public Key":

OP_CHECKSIG is used directly without first hashing the public key. This
was used by early versions of Bitcoin where people paid directly to IP
addresses, before Bitcoin addresses were introduced. scriptPubKeys of this
transaction form are still recognized as payments to user by Bitcoin Core.

scriptPubKey: <pubKey> OP_ CHECKSIG
scriptSig: «<sig»

Checking process:

Stack Script Description
Empty. <sig> <pubKey> OP_CHECKSIG | scriptSig and scriptPubKey are combined.
<sig> <pubKey> | OP_CHECKSIG Constants are added to the stack.
true Empty. Signature is checked for top two stack items.

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

STANDARDIZED BITCOIN TRANSACTIONS AND SCRIPTS

= P2SH: "Pay To Script Hash"

A transaction's output is a boolean script that returns true or false. In this
case, a miner will send money to your output if the script is run with the
specified parameters. With P2SH, you can create multi-signature wallets
that check for multiple signatures.

<recipient signature> [further signatures] <Redeem Script> OP_HASH160
<Hash160(Redeem Script)>

OP_EQUAL
<OP2>

<pub key recipient A> <pub key recipient B> <pub key recipient C> <OP3>
OP_CHECKMULTISIG

= P2WPKH: "Pay To Witness Public Key Hash":

This was a segwit feature (Segregated Witness). Instead of using scriptSig
parameters to validate transactions, a new part of the transaction called
witness is used.

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

tains unlockir
1at spent tx
n-2

tx .

is spent)

input .
. - B=3

confirmed on network, output

19 scrij
UTXOCs

(contained

(:L;tpl.;tn__1

spent by inpu

locktime

UT¥0s that were
t)

ocutput
(contains UTXOs to be
onsumed by i:]p'.;t,“l:

locktimen

Transaction Relationship

locktime
o+l

01000000019c2e0f24a03e72002a9
6acedbl2a632e72b6b74c05dc3ce
ab1fe78237f886c48010000006a47
304402203da9d487be5302a6d69e
02a861lacff1da472885e43d7528ed
9b1b537a8e2cac9022002d1bcal3
ale9715a99971bafe3b1852b7a4f0
168281chd27a220380a01b330701
2102¢c9950c622494c2e9ff5a003e3
3b690fe4832477d32c2d256¢c67eab
8bf613b34effffffff02b6f5050000000
0001976a914bdf63990d6dc33d705
b756e13dd135466c06b3b588ac84
5e0201000000001976a9145fb0e9
755a3424efd2ba0587d20b1e98ee
29814a88ac00000000

STEPS OF BUILDING A TRANSACTION

= Step 1- Identify the previous transaction that contains your UTXOs
(Bitcoin).

= Step 2- Create input outpoints for the new transaction to find previously
spent UTXOs.

= Step 3- To spend/unlock the new UTXOs for the next transaction, you
must build the outputs for the new transaction so the locking script
contains the conditions.

= Step 4- Finally, write the unlocking script to meet the same criteria as
the transaction locking script. The final step is the recipient's signature,
which is also in the unlocking script, but is added in the middle of the
transaction.

TECH TALLINN UNIVERSITY OF TECHNOLOGY

STEPS OF BUILDING A TRANSACTION
= A PubkeyScript is a set of recorded instructions that governs how the
next person can receive and spend Bitcoin.

= Public key hash and private key signature are required to unlock the
PubKey Script and spend received funds.

4 N

' Send 1BTC . Send 1BTC
= =
i % i .
- ll w II
@ - : Bob @ - Joe
ri ubkeyScript
&9\‘ Signature script
Unlocking / \

\ Public key hash Digital Signature /

Source: https://genesisblockhk.com/what-is-p2pkh/

TAL
TECH

TALLINN UNIVERSITY OF TECHNOLOGY

STEPS OF BUILDING A TRANSACTION
= To spend Bob's new bitcoin, he must prove he owns the Bitcoin address
Alice sent it to.

= In P2PKH, only the owner of the bitcoin address provided to Alice can
pass it on.

= Bob, generates the scriptSig to satisfy the scriptPubKey (generated by
Alice) to send his Bitcoin to another person

TECH TALLINN UNIVERSITY OF TECHNOLOGY

REAL EXAMPLES OF BITCOIN TRANSACTION

= Input

Hex:
7629144fd31c644c4b46c153601d
0e194ab689570f4ce488ac

ASM
OP_DUP
OP_HASH160

fd31c644c4b46c153601d0e194ab6895
70f4ced

OP_EQUALVERIFY
OP_CHECKSIG

encoded in ASM, assembly.

TALLINN UNIVERSITY OF TECHNOLOGY

TECH

Sigscript:

483045022100c71b09c8161cal4b6ef96f155173bda080d72bb
77953122f268b9527ff806f9302200fac42255dbe0317bbbea75
837fe2e9e9bfdb3fc1161d5c45353dfdf4ecba074012102f4c4c2b
0b7c23b472cdc8c27d22a41677d7e69e220675647ccf231831e
5113cf

ASM:

3045022100c71b09c8161cal4b6efo96f155173bda080d72bb77
953122f268b9527ff806f9302200fac42255dbe0317bbbea7583
7fe2e9e9bfdb3fc1161d5c45353dfdf4ecba0740102f4c4c2b0b7c
23b472cdc8c27d22a41677d7e69e220675647ccf231831e5113
cf

Pkscript is encoded in hexadecimal ()Hex, and Bitcoin's scripting language op-codes are

REAL EXAMPLES OF BITCOIN TRANSACTION

Outputs ©
Index 0
Address 18eszjuaEYUBgCnX4eVgErybziHYatjNAW @
Pkscript OP_DUP
OP_HASH160
53f2d709258af543bbcfb3a271e3¢26405¢3935¢
OP_EQUALVERIFY
OP_CHECKSIG
Index 1
Address 1GnAy54jh5UC9ynAt104H7FNGfPzPgjShj W
Pkscript OP_DUP
OP_HASH160

TAL

TECH

ad14ecc25a9824657c0590e28f58¢c7c390a2fcf3
OP_EQUALVERIFY
OP_CHECKSIG

TALLINN UNIVERSITY OF TECHNOLOGY

Details

Value

Details

Value

Spent

0.03847842 BTC

Spent

1.04498774 BTC

ETHEREUM AND ITS DATA PROCESSING
HOW BLOCKCHAIN ACCUMULATES BLOCKS

» Transaction: A node starts a transaction by first
creating and then digitally signing it with its private
key.

= Validation: A transaction is propagated to peers that
validate the transaction based on preset criteria.
Usually, more than one node are required to verify the
transaction.

= Block building and chaining: Once the transaction is
validated, it is included in a block, which is then
propagated onto the network.

= Block distribution:
= Indirect, algorithmic consensus

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

validation

e e‘e

transaction E

|

&edlle — oy

consensus

Nelle
NeVle
NedVle

uogNqLISIP %20|q

3ulureyd
pue 3uip|ing »20|q

BITCOIN VS ETHEREUM
UTXO VS ACCOUNT

TRl ’ UTXO
™1 %3 —p TXO
: :
input0 | inputo value in Satoshis

/ 10ks
output0 inputl
™0 p inpu Txa

50kS 40kS
input0 outputl output0 = 50ks input0
~{zsus P /

output0

inputl

™ Tx4

outputl
l 100kS l .
input0 input0
— ! 100kS i /
output0 output0

outputl |+ >

input3

output0 | = "b

,_.
wd
=
&

UTXO

TAL
TECH

TALLINN UNIVERSITY OF TECHNOLOGY

State

14c5f8ba:
- 1024 eth

bb75a980:
- 5202 eth
if tepetrnet Atoragelte dita| D]}
contract storage|te.datald]] = tx datafl]

[0, 235235, 0, ALICE

BYZbfa2f

- 0 eth

serdite value | 3. contradt storage|0])
senditvalue | 3, contract.storage]1]H
senditx value | 3, contract storagel2])

[ALICE, BOB, CHARLIE |

4096ad65:
- 77 eth

Transaction

From:
14c5f88a
Te:
bb75a980
Value:
10
Data:

2
CHARLIE
Sig:
30452fdedb3d
f7959f2cebBal

Account State

State'

14c5i8ba:
- 1014 eth

bb75a980:

- 5212 eth

If lcontract storage|tx. datal0]):
contract.storage[te. datald]] = tedatall]

[0, 235235, CHARLIE, ALICE ..

B92bf92f:
-0 eth

gendibx wilue [3, comtrsct storage[0])
send{le value [3, comtract storage(1])
sendi e value [3, contract storage(2])

[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

PROGRAMMING LANGUAGES FOR BLOCKCHAINS

TAL

TECH

SCL Study ID Blockchain Type-System Paradigm Purpose® Focus™
Reaction- 551 [30] - Static Declarative SPEC Legal Con-
Rule ML tracts
DSL4SC 552 [99] Hyperledger Dvynamic Declarative SPEC Natural
Language
BitML 553 [11] Bitcoin Dynamic Declarative IMPL Security
eSML 554 [77] - Dynamic Declarative SPEC Business
Process
Findel 555 [15] Independent Dynamic Declarative SPEC Financial
Contracts
BCRL 556 [7] Hyperledger Dynamic Declarative IMPL Business
Process
ADICO SS7 [44] Ethereum Dynamic Declarative SPEC Legal-
Contracts
Commit- 558 [31] - Static Declarative SPEC Legal-
Rule ML Contracts
Scilla 559 [94] Zilliga Static Functional IMPL Security
SmaCoNat 5510 [84] - Dvynamic Imperative SPEC Natural
Language
SPESCS 5511 [54] - Dynamic Declarative SPEC Legal-
Contracts
Simplicity S512 [102] Bitcoin Dynamic Functional IMPL Security
Flint 5513 [91] Ethereum Static Imperative IMPL Security
Idris 5514 [79] Ethereum Dependent Declarative IMPL Security
FSolidM 5515 [69] Independent Dyvnamic Declarative SPEC Security
Marlowe 5516 [61] Cardano Dynamic Declarative SPEC Financial
Contracts
Typeceoin 5517 [27] Bitcoin Type-Safety Symbolic IMPL Crypto.
QSCL GL1 [28] Qtum Static Imperative IMPL Business
Process

TALLINN UNIVERSITY OF TECHNOLOGY

PROGRAMMING LANGUAGES FOR BLOCKCHAINS

TAL

TECH

Pact
BALZaC
DAML
vy

Bamboo

Fi
Liquidity

Michelson
Plutus

Rholang

Vyper
Solidity

Formality
Pyramid

LLL
F-Sol
Babbage
Mutan

ErgoScript

GL2 [83]
GL3 [9]
GL4 [34]
GL5 [86]
GL6 [110]

GL7 [5]
GL38 [78]

GL9 [101]
GL10 [21]
GL11 [70]

GL12 [20]
GL13 [43]

GL14 [68]
GL15 [19]

GL16 [40]
GL17 [85]
GL18 [24]
GL19 [106]

GL20 [33]

Kadena
Bitcoin

Hyperledger

Bitcoin
Ethereum

Tezos
Tezos

Tezos
Cardano
Rchain

Ethereum
Ethereum

Ethereum
Ethereum

Ethereum
Ethereum
Ethereum

Ethereum

Independent

TALLINN UNIVERSITY OF TECHNOLOGY

Dynamic
Dynamic
Dynamic
Static

Type-Safety

Type-Safety
Dynamic

Monomorphic

Dynamic
Dynamic

Dynamic
Static

Static
Strongly
Typed
Dynamic
Static
Type-Safety

Dynamic

Type-Safety

Declarative
Imperative

Declarative
Declarative

Imperative

Imperative
Functional

Low-
Lewvel
Declarative

Declarative

Imperative
Imperative

Declarative
Imperative

Declarative
Functional
Symbolic

Imperative

Declarative

IMPL
SPEC
IMPL
IMPL
IMPL

IMPL
IMPL

IMPL

IMPL

IMPL

IMPL
IMPL

IMPL
IMPL

IMPL
IMPL
SPEC
IMPL

SPEC

Security
Verification
Business
Process
Domain
Specific
Formal
Verf.
WVerification
Formal
Verf.
Domain
Specific
Financial
Contracts
Domain
Specific
Security
Domain
Specific
Efficiency
Safety

User Frnd.
Verification
Human
Undr.
Formal
Verf.

Legal-

REMIX: OFFICIAL DEVELOPMENT ENVIRONMENT

Remix is used for contract
development, as well as
learning and teaching
Ethereum.

Solidity contracts can be
written using Remix IDE, a
powerful open source tool.

TALLINN UNIVERSITY OF TECHNOLOGY

rsr ep o @

DEPLOY & RUN TRAMNSACTIONS a

ENVIROMNMENT

JavaScript VM (Berlin) =

ACCOUNT ©

Ox5B3..eddC4 (100 ether) * Q=
GAS LIMIT

3000000
WALUE

0 wel -
CONTRACT
l Ballot - contracts/3_Ballot.sol -

[| PUBLISHTO IPFS

OR
At Address Load contract from Address
Transactions recorded @ -
Deployved Contracts (m}

Currently you have no contract instances

to interact with.

remix {run remix.help{} for more info)

Source: https://remix.ethereum.org/

@, ¥ Home

1 [/ SPDX-License-Identifier: GPL-3.8

2

3 pragma solidity >=8.7.8 <8.9.8;

4

5 -

[* @title Ballot

7 * @dev Implements wvoting process along with wote delegation

E:

9~ contract Ballot {

1e

11 - struct Voter {

12 vint weight; // weight is accumulated by delegation

13 bool woted; f/ if true, that person already wvoted

14 address delegate; // person delegated to

15 vint wote; /4 index of the wvoted proposal

16 ¥

1F

138 - struct Proposal {

19 f# If you can 1imit the length to a certain number of bytes,

2@ ff always use one of bytesl to bytes3Z because they are much cheaper

21 bytes32 name; 4 short mame (up to 32 bytes)

22 wint woteCount; // number of accumulated wotes

23 ¥

24

25 address public chairperson;

26

27 mapping{address =» Voter) public voters;

23

29 Proposal[] public proposals;

3@

31~ f**

32 * @dev Create a new ballot to choose one of 'proposalNames”.

33 * @param proposallames names of proposals

34 =f

35 - constructor(byvtes32[] memocry proposalMames) {

36 chairperson = msg.sender;

37 woters[chairperson].weight = 1;

33

39 - for {(uint 1 = @; i < proposalNames.length; i++} {

A48 f¢ "Proposal({{...})' creates a temporary

41 /¢ Proposal object and 'proposals.push(...)})"

42 /¢ appends it to the end of 'proposals’.

43 ~ proposals.push{Propocsal({

44 name: proposalflames[i],

45 woteCount: @

46 s

47 T

43 ¥

49

58 - fE=

51 * @dev Give "woter®' the right to wote on this ballot. May only be called by ‘chairperson’ .

52 * @param voter address of wvoter

=2 w0

¥ @ [| listen on netwark Q Search with transaction hash or addr...

Zwan g

pragma solidity >=0.4.22 <0.6.0; //alt:*0.4.22 => version pragma: defines required compiler

version
import "remix_tests.sol"; // this import is automatically injected by Remix. => single line comment

import "./ballot.sol"; library or contract imports (re-use)

/*

write something here multi line comment

*/

contract test3 { contract section

Ballot ballotToTest; object definition

function beforeAll () public { function definition without return value
ballotToTest = new Ballot(2);

}

function checkWinningProposal () public {

ballotToTest.vote(1);

Assert.equal(ballotToTest.winningProposal(), uint(1), "1 should be the winning proposal");

}

function checkWinninProposalWithReturnValue () public view returns (bool) { ...with return value
return ballotToTest.winningProposal() == 1;

}
}

EXERCISE 1

Task:

G @ @ Home % 3 Ballot.sal % HelloWorldsol

SOLIDITY COMPILER B o
pragms solidity “@.4.22;

1

2~ contract hellokorld |{
COMPILER [iv function renderHelloWorld ()} public pure returns (string) {
E
6

1. Enter Hello World smart contract into
remix

2. Compile and debug it

3. Run it and see what happens

4. Switch the compiler version to some
0.4.x - compile + run

5. Change the pragma in code line 1 to

return 'hellollorld”;
}
¥

L1

0.4.26+commit.4563c3fc

[Include nightly builds

LAMGUASE

ik

EVM WERSION

qr

compiler default

LI I

0.4.1 9 C&r B Autocompile
6. Change line 4 (string) to (string () Enableoptimization | 200 %
memOFY) 9 C&r Hide warnings

7. Change the pragma + compiler version

to higher than 0.5.x - c&r

CONTRACT

helloWorld (Hello World.sol) =

;é&" TALLINN UNIVERSITY OF TECHNOLOGY

Thank you very much for your attention!
Q&A?

Reference: Arumaithurai M., Introduction to Blockchains, Tallinn,
Estonia 2019, https://tinyurl.com/n2y3k5pu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

